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Preacceleration in classical electrodynamics
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As is well known, the Lorentz-Dirac equation follows by means of a hypothesis of simplicity. When this
hypothesis is ruled out, several additional terms can be added to the one that appears in the Lorentz-Dirac
equation. We study the equation that considers the two terms explicitly shown by Dirac in his paper. It is
shown, on general grounds, that the additional terms are not related to the radiation emitted by the electron;
which is fully taken into account by the Larmor term of the Lorentz-Dirac equation. This result is explicitly
verified by means of an exact solution of the enlarged Lorentz-Dirac equation that corresponds to a monoen-
ergetic electron in circular orbit. Also it is shown that the additional term diminishes the effect of preaccel-
eration in comparison with the one that comes from the Lorentz-Dirac equation.
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I. INTRODUCTION ture. In the first one the electron is still considered as a point
particle, but alternative equations of motion to the Lorentz-
The dynamics of the electron based on the concept of ®irac equation have been proposed in order to avoid the
point charge plays a fundamental role in classical as well agxistence of runaway solutions and preaccelergte]. In
in quantum electrodynamics. At the classical level the poinparticular, the Landau-Lifshitz equatidd] has gained re-
model has been of great importance in the description of theewed interest lateljl0—12. In the second method the idea
electron dynamics in particle accelerators; specially in conof a point electron is abandoned in favor of an extended one
nection with the spectrum of synchrotron radiation, which is[13—-17, epecially by considering a model based in a uni-
correctly described by means of Schwinger’s theoretical forformly charged spherical shell. This model leads to the Cald-
mula [1]. Besides, in quantum electrodynamics the pointirola equatior(18,19 in the relativistic case, equation that is
model of the electron has allowed one to calculate tiny effree of runaway solutions and acausalities if the radius of the
fects, such as the shift of the energy levels in hydrogenlikepherical shell is bigger thare2/3mc.
atoms and corrections to the magnetic moment of the elec- The models based on a point electron as well as that of a
tron; calculations that agree with great accuracy with thespherical shell cannot be considered as fully satisfactory. For
experimental values. Moreover, high-energy experimentgxample, the existence of divergent integrals in classical as
have not revealed any structure for the electron even at disyell as quantum electrodynamics constitutes a clear indica-
tances as small as 1€ cm. tion that the electron cannot be represented by a point. The
The fundamental equation of motion for a point electronmanipulation of quantities that take an infinitely large value
in classical electrodynamics is the Lorentz-Dirac equations out of place in a definitive theoretical formulation.

[2], which is The model where the electron is represented by a spheri-
_ o cal shell has a rather hybrid structure, since the Caldirola
v#=(e/mc)F*"v + ro(v*—v v\ v/ c?), (1) equation determines, at least, in principle, a world line that

describes the trajectory of a point. Physical motions such as
where e and m are the charge and mass of the electronyotations, deformations, or oscillations of the spherical shell,
respectivelyg is the velocity of lighty* is the four-velocity = due to external fields or the fields of other charges, are not

of the e|ectron.zl4, and dots denote derivatives with respectdescribed by the W0r|d Iine. A fU”y relatiViStiC formulation

0,1,2,3, the metric is€1,1,1,1), the parameteg, is given  including the electromagnetic field and also fields such as
by gravity and others that explain the stability of the electron.

But a description in terms of fields necessarily involves a
02 dynamical system with infinite degrees of freedom, and not
e ) ) i
To= , (2) Justthree, as the Caldirola equation does.
amc® Unfortunately, a field theoretical formulation of an ex-
tended electron involves enormous mathematical complexi-
and Gaussian units are used throughout this paper. The firges. Besides, the only structure dependent quantities of the
term on the right hand side of E€l) is the acceleration due electron that the experiment shows nowadays are its mass
to the external field=#"; while the second term is the con- and charge. It is precisely due to this situation that simplified
tribution to the acceleration due to the electron’s own field. models, such as the point electron or the spherical shell, are
The Lorentz-Dirac equatiofil) presents some pathologi- of interest, since they may cast light into more realistic mod-
cal features, such us the existence of runaway solutions argls. The domain of validity of classical electrodynamics is, of
acausal or preacceleration effects. To deal with these paourse, limited by quantum phenomena. Nevertheless, clas-
thologies two methods have been worked out in the literasical electrodynamics is still of interest in this context, since
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it must be obtained from the quantum formalism in the limit equation corresponds to a truncated version of an hypotheti-
when Planck’s constant tends to zero. cal “exact” equation which is free of acausal effects. Our
Even if the alternative equations of motion for a point conjecture is that in the “exact” equation the electron’s own
charge do not have runaway solutions and acausal effectigld would give rise to a power series in the parameteof
they present, in general, other types of inconsistencies. Fded- (2).
example, in the case of the Mo-Papas equaft&nHuschilt In this paper we present evidence in support of the above
and Baylis[20] found evidence against its general validity. Mentioned possibility about the existence of a classical equa-
Besides, Comay21] showed that the equations of Mo and tion of motion for a point charge without pathological fea-
Papas[5], Bonnor[6], and Herrerd 7] are unphysical, be- tures. B_ecause of its great complexn_y, the p_roblem will not
cause they do not satisfy the principle of conservation of th®?® considered here in its full generality; but instead we will
energy. Futhermore, we show2P] that the Mo-Papas and consider the enlarged Lorentz—l_Dl_rac _equguop that contains
Landau-Lifshitz equations admit as exact solutions, with apth® two terms that appear explicitly in Dirac's paper. This
propriate external fields, the motion of a monoenergetic€duation is the following one:
charge in circular orbit, as well as the motion of two identical . . L .
charges that rotate at constant angular velocity at the oppo- v*=(€/Mo)F**v ,+ 1o(v*— v v\v*/c?) — 75{(4lc*)v?
site ends of a diameter. For these motions the rate of radia- . Y b s g
tion can be determined by two independent methods. The X (vv)o#+[(1e)v" = (4lc%)v®— (4/c%) (vv) Jvo*
first one uses the well-known Lienard-Wiechert fields of a 2NN
point charge to calculate the energy flux across the surface —(4lc%) (wv)v*}. _ (3). _
on a sphere of an infinitely large radius that encloses the The content of the paper is as follows. In Sec. Il it is
charges. This method allows one to obtain the correct rate gihown that the additional term proportional 49 in Eq. (3)
radiation, since it follows uniquely, without any ambiguities does not have any relation with the radiation emitted by the
whatsoever, from the Maxwell equations. In the seconccharge. As will be clearly established, the radiation emitted
method the rate of radiation is obtained starting from thedy the charge is fully taken into account by means of the
Mo-Papas and Landau-Lifshitz equations by using the enponlinear Larmor term that appears in the Lorentz-Dirac
ergy conservation law, the input energy due to the externg#quation. The proof of this property is carried out in general
fields, and the symmetries of the motions. It turns out that fogrounds, and consequently, with independence of the en-
the motion of one charge the rate of radiation obtained fronfarged equation under consideration, the radiation is exclu-
the solution of the Mo-Papas equation coincides exactly witgively described by the Larmor term of the Lorentz-Dirac
the one derived from the fields of a point charge for thiséquation.
motion. But in the case of the solution for the two charges, In Sec. lll, it is shown that Eq(3), with appropriate ex-
the solution of the Mo-Papas equation does not describe coternal fields, allows as an exact solution the motion of a
rectly the rate of radiation due to the interference of the fieldgnonoenergetic electron in a circular orbit. This solution re-
of both charges. In the case of the Landau-Lifshitz equatiofProduces exactly the same spectrum for synchrotron radia-
both solutions lead to a rate of radiation that does not cointion as the Lorentz-Dirac equation does; that is, Schwinger’s
cide with the one derived from the fields of a point charge well-known formula.
Of course, the difference between the rate of radiation calcu- In Sec. IV, Eq.(3) is applied to the motion of an electron
lated by the two procedures is, like the departure from cau@long a straight line in the potential well, that is, in an exter-
sality in the case of the Lorentz-Dirac equation, very small.nal electric field that has a fixed value in a certain interval
As has been emphasized by Parf& and Blanco[23], and vanishes identically outside it. Because of the high non-
the above mentioned troubles that affect the equations dinearity of Eq.(3), in this case an exact solution does not
motion for a point charge do not mean that it is impossible toS€em to be possible. However, by transforming(Bginto
construct an equation of motion for a point charge consistern integro-differential equation, the solution can be obtained
with basic principles such as the principle of causality andvith any degree of accuracy. The relevant result is that the
the principle of energy conservation, and that at the samédditional term proportional t@é contains corrections to the
time reproduces the rate of radiation obtained from the fieldgreacceleration of order, that diminish the acausal effect.
of a point charge. In this paper we will follow this concep-  Finally, Sec. V is devoted to some comments.
tion. Although in addition to the runaway solutions and acau-
salities the Lorentz-Dirac equation also contains other de- Il. GEOMETRICAL GROUNDS
fects as, for instance, instability problefi#st,25 and lack of
uniquenesg23,26—28, here we will focus mainly on the = The purpose of this section is to clarify the physical
problem of preacceleration. Because of the well-known exmeaning of the additional term proportionalﬁ@:that figures
perimental limitations of classical electrodynamics, we willin the enlarged Lorentz-Dirac equati¢8), and more gener-
adopt consistency with basic principles as the guidance prally, the physical meaning of the almost arbitrary four-vector
cedure, leaving aside experimental or practical aspects. THg, that appears in Dirac’s papg2]. To this end, two points
fundamental approach of Dird2] will be followed by con-  of departure from Dirac’s approach are of fundamental im-
sidering the electron as a point from the start, but discardingortance. The first consists in the use of only the physical
Dirac’s assumptions of simplicity. This opens the possibilityfields of the electron, that is, the retarded fields. The second
that the preacceleration arises because the Lorentz-Diramnsists in following Rohrlich’s approach based in the four-
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momentum associated with the electron’s fig2d], but con-
sidering now an arbitrary world line, and not just a charge in
uniform motion.

In his paper Dirac computes the flow of the energy-
momentum tensor across a thin world tube of radiughat
surrounds the electron world lirg,(7). A point x,, on this
tube satisfies the following equations:

(X, —2,)(XF—2")=¢?,

(4)

(X,—2z,)v*=0.

For an arbitrary proper time, Egs.(4) determine a two-
dimensional sphere of radius centered at the poirg, (7)

PHYSICAL REVIEW E6, 046624 (2002

FIG. 1. The hyperplan& is orthogonal to the four-velocity*,

and contained in the hyperplane orthogonal to the fourands is a Dirac tube that surrounds the electron world line. The

velocity v, (7). Therefore, an integral over the tube can be
performed by integrating first over the two-dimensional
sphere, followed by an integral over the proper time. Now,
from the requirement of conservation of energy and momen
tum, Dirac concludes that the integral over the two-

light coneC is drawn from the straight part of the electron world
line into the future.

- Inorder to absorb the divergent part®f, by means of an
electron mass renormalization procedure, some restrictions

dimensional sphere must be a perfect differential of a fourabout the permissible hypersurfatethat appears in Eq5)

vectorB,, . This four-vectoB, is such thaBM is orthogonal

are necessary. Let us begin with Rohrlich’s hyperplane

to the four-velocityv , ; but it is not determined by the con- ©orthogonal to the electron world ling29]. Following also
servation of energy and momentum. Thus a family of perRRohrlich, let us isolate the point where the hyperplane cuts

missibleB,, exists, which in turns gives rise to a family of
permissible equations of motion for a point electron. Dirac
obtains the Lorentz-Dirac equatidf) by choosing the sim-
plestB,, that is, the one proportional to the four-velocity
v, . Dirac also presents in his paper another possije

the electron world line by means of a two-dimensional
sphere of radiug contained in the hyperplan® and cen-
tered at the point of intersection. Instead of evaluating the
integral (5) directly over the hyperplane, it is instructive to
calculate it by an indirect way, with the help of Fig. 1 and the

which when added to the simplest one gives rise to the erroperty

larged Lorentz-Dirac equatiof8) that will be studied in the
next two sections.

The fundamental quantity to be considered in this section)

is

1
PM(T):ELTMdEV* (5

"7 ,,=0, (7)
which is valid off the electron world line.

In Fig. 1 o is the Dirac tube defined by means of E@b.
For this reason the two-dimensional sphere at the upper end
of the Dirac tube coincides exactly with the two-dimensional
sphere in Rohrlich’s hyperplar®. In other words, the Dirac
tube o and Rohrlich’s hyperplan® fit perfectly well.

whereX, is an arbitrary spacelike hypersurface that intercepts In what follows the electron world line is assumed to be

the electron world line at the poir,(7), andT,, is the

an straight line in the remote past; which ensures that the

usual energy-momentum tensor constructed with the retardddtal energy radiated by the electron is finite. The Iigm cone

fields of the electron. Then, F,, is the external field, the
equation of motion of the electron would be

P

dr

(6)

=(elc)F,,v".

However, the energy-momentum ten§Qy, has strong sin-
gularities at the point where the hypersurfateintercepts
the electron world line, which implies that the integt&)
does not exist. In facfT ,, has three termp30] that behave
like p~%, p~3, andp 2, wherep is the invariant distance
defined by—v ,(x*—2z*)/c. In particular, the term that be-
haves ap 4 makes the integral in Eq5) not only ill de-
fined, but divergent. This difficulty is, of course, directly

C of Fig. 1 is drawn into the future from the poif ),
located in the straight section of the electron world line. It is
easy to see that in the straight section, but not in general, a
two-dimensional sphere of the Dirac tube is such that all its
points have a unique retarded point over the electron world
line. Therefore, the lower end of the Dirac tube fits perfectly
well with the light coneC.

In the limit when 7 goes to—«~ ande goes to zero, the
integral over Rohrlich’s hyperplanE can be transformed,
with the help of Eq(7), into an integral over Dirac’s tube
plus an integral over the light cor@ namely,

1 1
Pu(7)=¢ LTWdau - f _TwdC. ®

associated with the concept of a point electron, and the
standard solution is to perform a mass renormalizatiorThe integral over the Dirac tube has been evaluated else-

procedure.

where,[31,32 and the result is
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1 [ e? . 2e2  2g2. . parent by means of Teitelboim’s splitting of the energy-
—f Tﬂydo”zf Vu~ T glut _SUAU}\U“ dr'. momentum tensof ,, into a bound,TZV, and a radiation,
o -\ 2¢eC 3c 3c (9) T;,LV’ part[31,36|
_Tb r
Tu=Tot Ty (11

The surface element of the light cor@ is [33]: dC”

=k*p?dp dQ2, wherek” is the null ray{x"—z"(7)}/p, and  The bound energy-momentum tens‘ﬁf[,, is defined by the

dQ is the solid angle element in the hyperplane orthogonaterms of T,, that behave likep~* and p~3; whereas the

to v,(7). BesidesT,,dC"= (e2/87) K, p ?dpdQ. Now, radiation energy-momentum tens‘b[;y consists of the terms
the integral over the light con€ is trivial because all the that behave likep 2. The crucial property of the splitting
points of the lower two-dimensional sphere of the Dirac tubg(11) lies in that both parts are dynamically independent off
havep=¢. Moreover, in the limit whenr goes to— o, the the electron world line, sincfézy as WeIIT;“, satisfy Eq.(7).
upper limit of p at Rohrlich’s hyperplane is. The result of ~ Also, the splitting(11) allows to understand in a thorough
the integral over the light con€ is equal to €%/2ec?)v,  way Rohrlich's local radiation criteriof85]. ThusT,,, rep-
(—). If, as usual, the bare mass four-momentogv , is resents energy-momentum that detaches itself from the elec-
added in order to carry out the renormalization process, tht¥on and leads an independent existence as soon as it is pro-
four-momentunP , associated with Rohrlich’s hyperplade duced by the electron; whereaEf’w represents energy

o
is the following: momentum that is “tied” to the electron and is carried along
with it.
[ e . 262 The splitting(11) induces a natural splitting of the four-

momentum(5) into a bound32 and a radiatiorPL part, each
of which satisfies Eq8). In the case oP;L, the integral over
o2 the light cone vanishes identically, and the integral over the
dr’' + v, (—»), (100 Dirac tube gives rise to the nonlinear term that represents the
2sc? radiation in the integrand of Eq10). However, in the case
of PZ, both the integral over the Dirac tube and the integral
from which, because of Ed6), the Lorentz-Dirac equation over the light cone are not vanishing. The integral over the
(1) follows. Dirac tube gives rise to the perfect differentials that appear in

The result(10) for the four-momentun{5) has been ob- the integrand of Eq(10), while the integral over the light
tained for an arbitrary world line, except for the restriction of cone gives rise to the last term in the right hand side of Eq.
having a uniform motion in the remote past, and for an hy-(10). o _ _
perplaneS, orthogonal to the electron world line at the point ~ The derivation of the Lorentz-Dirac equatiodl) by
of intersectionz, (7). In the particular case of a uniform means of the four-momentuf, given in Eq.(10) does not
motion for all proper time, that is, fo{vﬂ(r)EO, Eq. (10) use the hypothes_ls of simplicity _of Dlrgc. I_-|(_)W§\ve_r, as _W|II
reduces to the well-known result of Rohrlich, sinog be cle_ar b(_elow, Dirac’s hypothesis pf simplicity is implicitly
(=) =v,(7) contained in the geometry of Rohrlich’s hyperplane. In gen-

u(7).

The above discussion shows that Rohrlich's well-known®'@!: the hypersurfack of Eq. (5) does not have to be an
solution of the old problem about the 4/3 fact®9], is hyperp_lane, and then, _becal_Jse of the_strong smgulqutles of
closely related with Dirac’s derivation of the Lorentz-Dirac | «v» different ways of isolating the point of intersection of
equation of motion(1) for a point electron. In this context, the electron world line with the hypersurfagegive rise to
Rohrlich’s choice of an hyperplane orthogonal to the four-different P, and consequently to different equations of
velocity plays a crucial role. In fact, electron mass renormalmotion. _ _ , .
ization is possible if and only if the hyperpladieof Fig. 1 is Due to the different physical meaning of the radiation and
orthogonal to the four-velocity34]. _bqund energy momentum tensc'ﬁ*;§,, andT,b” . respeqtiv_ely,

The two first terms of the integrand of EG.0) are perfect it is convenient to calculate the corresponding radiation and
differentials, and therefore after integration they represenPound four-momentum®, and P’ in a separate way. An
quantities that depend on|y on the proper timassociated instructive representation of them can be obtained with the
with the point wheré intersects the electron world line. The help of Fig. 2. In this figureo is an arbitrary two-
contribution at the lower limit of the integral cancels out dimensional surface contained I that encloses the points
with the term that contains ,(—) in Eq. (10). On the Of X that are in an immediate vicinity of the point(7) of
contrary, the third term is not a perfect differential, and itsintersection betweel and the electron world lineC is the
integral contains information on the whole past history of thehypersurface constructed by means of null rays, where each
electron until the proper time. ray is determined by a point af and its corresponding re-

In his study about the electromagnetic radiation, Rohrlichtarded point on the electron world line. The timelike tabe
clearly identifies the third term in the integrand of Eg0) ~ surrounds the electron world line, and at the end the limit
with the momentum four-vector rate at which radiation iswill be taken in which%* tends to spatial infinity.
leaving the chargg35]. The essentially different role of the Considering that the radiation tens‘ﬂlgv satisfies Eq(7),
third term with respect to the two first ones becomes transthe radiation four-momenturﬁL can be written as an inte-

P#(T)ZmOUM(T)-l-f

—o0

—U,— ——=U
2¢c2 * 3¢

2e?. .
+§v>\v Uy
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tron in a circular orbit, needs the electrostatic field generated
by an infinitely long solenoid of radiup=b, whose axis
coincides with theZ axis, and which is fed with a time-
dependent charge current density given by

J=Ats(p—b)e, (12)

where A is a positive numberg is the usual Dirac’s delta

function, p is the radial cylindrical coordinate, arsldenotes

the unit vector associated with the cylindrical coordinate

The charge density vanishes everywhere. These sources give
rise to the following electric and magnetic fields, expressed
in terms of their Cartesian components:

FIG. 2. 3 is an arbitrary spacelike hypersurface;is a two- E —(27A b2/c2 y
dimensional surface contained ¥handC is the three surface con- x=(2m ¢ )X2+y2’
structed by means of null rays.

gral over the three-surfade plus an integral over the tube Ey=—(27A b?/c?) ZX >

>” of Fig. 2. Due to the fact that the radiation energy mo- Xty

mentum T',, is proportional tok,k, and that the three- B (13

surfaceC is such thatk,dC*=0 [37], the integral ovelC E.=0,

vanishes identically no matter the form Bfando. There- B.—B.—B.—0

fore, only the integral oveE ™ survives in the case d?), . S

This integral has been evaluated elsewh@%®34,36, and  gytside the solenoid, and

the result is the integral of the nonlinear Larmor term that

appears in Eq(10). Now, sinceP, is perfectly well defined, Ex=(2mA/c?)y,

there is no room in it for the Dirac four-vect&,, . In par- 5

ticular, then, this four-vector does not have any connection Ey=—(27Alco)X,

with the radiation emitted by the electron, which is fully E_o (14
v 3

taken into account by means of the Larmor term that appears
in the Lorentz-Dirac equatiofl). In the following section
we will verify explicitly this property in the case of the exact
solution of the gnlarged Lo_renf[z—Dlrac E@) that describes inside the solenoid.
a monoenergetic electron in circular orbit.

The bound f AP be al . h The electric field is tangent to the circles contained in
e bound four-momenturR, can be also written as the 3 ha5 parallel to th-Y plane and centered at tieaxis.

sum of an integral over the hypersurfaCeand an integral \ 4reqver, the electric field has a fixed magnitude over each
over the tube&.” of Fig. 2. Butin this case, since the energy- gircle. It is immediate to see that the electromagnetic fields
momentum tensof,, behaves at least g6 * whenp goes  (13) and(14) satisfy the source free Maxwell equations, as

to infinity, the integral ove ™ vanishes. Thus, only the in- el| as the corresponding boundary conditions, at the sole-
tegral over the hypersurfac@survives and, as is evident, in pgig surfacen=b.

the limit when the two-dimensional surfaeeis shrunk into In what follows only the region outside the solenoid will
the electron world lind,, contrary toP!, , depends only on  be of interest. Besides, the time-independent electric field of
the proper timer. But now, due to the strong singularities of Eg. (13), a time-independent homogeneous magnetic field
Tf’w atp=0, PZ in contrast toP, is highly indeterminate. that points along th& axis will be assumed to exist outside
The condition for the renormalization of the mass requireghe solenoid. As will be shown below, E3) with these
that the surface of Fig. 2 cuts the electron world line external fields allows the solution corresponding to the mo-
orthogonally, but this by no means determinlé% [37].  tion of a monoenergetic electron in a circular orbit. Let us
Therefore, the four-vectoB, of the Dirac paper Is exclu- assume that the motion takes place in ¥ plane in a
sively contained in the bound four—momenttﬁ?ﬁ [38]. Now, circle of radiusa>b centered at the origin, that is

sinceP‘; depends only on the proper time it gives rise to
a perfect differential in the equation of motidf), as the
four-vectorB,, of Dirac does.

B,=B,=0, B,=(4mAtlc),

x%=ct, x'=acoswt, x’=asinwt, x3=0, (15

wherew is a time independent parameter. According to Eq.
(13), the only nonzero Cartesian components of the external

lIl. AN EXACT SOLUTION fields strength$*” are

The construction of the solution of the enlarged Lorentz- F%=—-F1°=E,, F%=-F? =g, F?=_-F?=8B.
Dirac equation(3) corresponding to a monoenergetic elec- (16)

046624-5



D. VILLARROEL PHYSICAL REVIEW E 66, 046624 (2002

It is immediate to see that these external fields are such that As is clear from Eq(21), the termrg of Eq. (3) appears
the componeny. =3 of Eq.(3) is identically satisfied, with-  exclusively in the radial component of this equation. The
out imposing any restriction on the parameterspi=x®  tangential component in E¢21) coincides exactly with the

=0. Moreover, from Eq(15) it follows that one obtained from the Lorentz-Dirac equation. The physical
meaning of Eq(22) becomes obvious when this equation is
vP=cy, vl=—cBysinwt, v?=cBycoswt, (17)  written in the form
whereB=a w/c andy is the constant, 2e2¢c
ev-E= B4, (24)
dt 3a?
y=g,=(1-B) " (18)

wherev is the ordinary velocity =v¢. The left hand side

If E denotes the magnitude of the time-independent electri€f Eq.(24) corresponds to the power that the external electric
field of Eq. (13) over the circle of radius, then Eq.(3) for field supplies to the electron. Therefore, because of energy

w=1is conservation and the fact that the kinetic energy of the elec-
tron remains fixed, the right hand side must be the total rate
—aw?y? coswt=(eyE/m)sinot+ (eByB/m)coswt of radiation that escapes to infinity. But the right hand side of

35 404 6. 10 Eq. (24) is exactly the total rate of radiation that follows
t1aw’y’ sinwt— 7B aw’y™ CoSwt,  from the nonlinear term of the Lorentz-Dirac equat[@9].
(199  This result constitutes a verification, for this particular mo-
tion, that thefg term of Eq.(3) has no relation with the
whereas Eq(3) for u=2 becomes energy that is radiated away, in agreement with the analysis
carried out in Sec. Il. In comparison with the Lorentz-Dirac
equation(1), the only effect of therj term of the enlarged
Lorentz-Dirac equatiori3) consists of a tiny change in the
magnetic field from that required by the Lorentz-Dirac equa-
(200 tion for the same motion.

—aw?y? sinwt=— (eyE/m)coswt + (eByB/m)sin wt

— 708 0°y® coswt— 73B%awby? sinwt.

Here it is convenient to introduce the radial unit vegiand
the tangential unit vectofa of the cylindrical coordinates,
which in terms of the Cartesian unit vectioand]j are given
by

IV. THE PREACCELERATION

Although the term proportional ta-g of the enlarged
Lorentz-Dirac equatior{3) does not affect the radiation, it
has, nevertheless, an important influence on the phenomenon

p=1 coswt+] sinwt, of preacceleration. In order to see this it is enough to con-
sider the case of a motion along a straight line, which will be
=1 sinwt+] coswt chosen as th& axis. The external electromagnetic field con-

sists then in an electric field that has a nonvanishing compo-

which allows to write Eqs(19) and (20) as nent only along theX axis. Thus, the only nonzero compo-
nents of the fields strengths*” are

3.5,
{(eyEIm)+ rpa wiy°}e FOl— 10—, (29

_ 2.2 404, 610717

=[aw®y*+(epyB/m)+ 58 0°y"p. For thisF#*, the componentg=2 andu=3 of Eq.(3) are

(21)  identically satisfied withv>=0v3=0. Now, as in the case of

o the Lorentz-Dirac equatiof#0], here it is also convenient to

From which it follows that write the components® andv? of the four-velocity in terms
of the rapidityw(7) as follows:

2e 3,4
E=- 322”7 (22 v%=ccoshw/c),
L (26)
and v =csinh(w/c).
mcyw The component withu=1 of Eq. (3) then becomes
B=— e (1+ Tgw4,84y8). (23
4

. . To o C g ‘5, o
For =0, Eq. (3) reproduces, once again, E®2). The W row=rf()+ 02(4W wi8wwI-wrch),  (27)
value ofE that, according to Eq22) is needed to sustain the
motion, can be easily obtained by choosing the appropriatesheref(7) =eE(7)/m. The component withe=0 of Eq.(3)
value of the constanf that appears in the charge current reproduces once again EQ7). In contrast to the case of the
density(12). Lorentz-Dirac equation, the introduction of the rapidityr)
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by means of Eq(26) does not linearize Eq3), because of For the purpose of this paper it is enough to consider the
the strong nonlinearities contained in the additional term pro€orrection to the Lorentz-Dirac equation contained in Eq.
portional torg. Fortunately, the effect of the nonlinear terms (31). Moreover, for definiteness the following puler) will

in Eq. (27) on the preacceleration can be studied without thede considered:

necessity of constructing an exact solution of Ej). Ap-
proximate solutions of Eq27) can be constructed with high
accuracy by the method of successive approximations devel-
oped by Aguirregabirig41]. But here it appears to be more
suitable to transform Eq(27) into an integro-differential Wwhere fy is a constant. The corresponding solution of the
equation. To this end, let us remember that the solution of théorentz-Dirac equatiori28) is given by

Lorentz-Dirac equation foeo(1—e-T1/7) (7<0)

w—row="f(7), (28 wy(7)=14 fo(l—e (1" 270)  (0<7<7y) (33
O (Tl<7').

fo for o<r< T1

f(n=1, 32

otherwise,

free of runaway behavior is given by

Since the interest here is in the preaccelerationwtsler) of
Eqg. (31 will be considered only for negative values of the
proper timer. Moreover, only the leading contribution to the
preacceleration due to the additional term proportionarfgto
This equation can be also written in the more convenien®f Eq.(3) will be given. Despite that this term is proportional

w= f e Sf(7+ 7ys)ds.
0

form, to 75, it gives rise to a contribution of order, to the
preacceleration.
e’ e y o Because of the jumps that the functidfr) in Eq. (32)
w=-— L e T'of(r)dr". (29 has at the proper times=0 andr= 7, the integrand of Eq.

(31) has delta functions at these proper times. The deriva-

From Eq.(29) and Eq.(27) it follows that the solutionw(r) ~ tiveSW; andw; that appear in the integrand of E@1) can
of Eq. (27) satisfies the following integrodifferential equa- P& €asily obtained from Eq28) for any 7, namely,
tion:

.. 1 .
wi=——{—w+f[0(7)— (17— 7))},
.oe’o e 7o e o o
w= f e 77 f(q-’)Jr—2(4w2w+8WW2
7o Jr C

1 .
W= ——{ =Wyt fo[ 6(7) = O0(7—711)]

B R2 ’ o
wle )]dT | 30 + rofo[ 8(7) — S(r— )T}, (34

If instead of the exact solutiow(7), the solutionw,(7) of ~ Whereé(7) is the step function and(r) is the usual Dirac

the Lorentz-Dirac equatioi28) is introduced in the inte- delta function. From Eq(33) it is easy to see that the term

grand of Eq.(30), then — rgw5/c* that appears in the integrand of E§1) gives rise
to contributions of order and 73 to the preacceleration.

.elre To e The term &jw,w?3/c? gives rise to a correction of ordef.
— =T IT 1 1
Wo=— f e "o (7)) + §(4W1W1+8W1W1 The only contribution of orderr, comes from the term
T . ooe
ArgwAw, /c? and it is the following:
—\)vi/cz)] dr’ (31 4nify |
) —2 e,
c eT]_/TO

will be an approximate solution for the acceleratiorof Eq.
(27). The exact solution of Eq30) can be then obtained by
means of successive iterations. Now,f{fr) vanishes for

Therefore, forr<0 the Lorentz-Dirac preacceleration that
appears in Eq(33) is changed to

large 7, then according to Eq29) w,(7) also vanishes for 47.F2

: /g -/ 10 2
large 7. This in turn implies that thev,(7) of Eq. (31) also foe”(1-e )1 1= 70 2eiin1) +0(70) (-
vanishes for large. This property is valid, of course, for any (35)

iteration. Therefore the exact solution of Eg7) constructed

in this manner has an “acceleratiomf(7) that also vanishes In other words, the term proportional mé that figures in the
for large 7. In other words, this procedure ensures that theenlarged Lorentz-Dirac equatidB) diminishes the effect of
solution does not have a runaway behavior. preacceleration with respect to the one that appears in the
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Lorentz-Dirac equation. This result suggests the possibility Barut[42] has given a very nice derivation of the Lorentz-
that the preacceleration may be, perhaps, suppressed in thérac equation(a procedure that has been extended to other
enlarged Lorentz-Dirac equation that considers the completeaseqd43,44)), where at first sight an ingredient such as the

series with all the powers of;. hypothesis of simplicity does not arise. However, in this case
the ingredient that plays a role analogous to the simplicity
V. A FEW COMMENTS one consists in the procedure itself; since even if the electron

field is considered as given by the Lienard-Wiechert formula,

We have discussed the preacceleration in (Bpby con-  the field point and the retarded one are worked out as inde-
sidering the puls&€32) that changes abruptly at=0 and=  pendent variables. Although this procedure is very nice and
=7,. However, we want to emphasize that the preacce|eraspmewhat reasonable, it does not follow from basic prin-
tion present in the Lorentz-Dirac equation is not a result ofciples.
forces that change too fast with time. In order to clarify this The present approach to the preacceleration has been
point, let us consider the motion of a charge 0 along the ~Mainly motivated by the lack of a correct description of the
positivex axis in an electrostatic fiel(x) that has only one radiation in several alternative equations of motion for a
component along the positive axis, and such thaE(x)  Point charge[ZO—ZZ._ln_ our approach the coincidence be-
vanishes identically fok<x, andx>Xx,. Then, by associat- tween the rate of radlatlon inferred f_rom the equation of mo-
ing the proper timer=0 with the pointx=x,, Eq. (29 that tion with the one obtained _from the fields of a point charge_ is
is valid for continuous as well as discontinuous forcesfully guaranteed, at least in the one charge case, since irre-

becomes spective of the enlarged Lorentz-Dirac equation, the rate of
radiation is given by the Larmor term. Besides, it is also

e’ n 0, o reasonable to expect that any admissB|ewill change the
W= o fo € of(r')dr (36) preacceleration contained in the Lorentz-Dirac equation.

This expectation is based on the fact that each admissible

for <0, wherer,>0 is the proper time corresponding to B, like the Schott terni31,36] that gives rise to the preac-

the pointx=x,. Equation(36) clearly shows thatv() is celeration in the Lorentz-Dirac equation, is associated with

positive for 7<<0, irrespective of the smoothness propertiesthe bound part of the energy-momentum tensor, as was

of f(7). Therefore, even if (7) starts to increase sufficiently shown in Sec. . .
smoothly atx=x,, the preacceleration is anyway present. Our conjecture about the suppression of the preaccelera-

We have chosen the pul€82) because it leads to the simple tion when_the_ self-field of the electron is considered as a
formula (33). power series in the parameteg, appears to be somewhat

In the literature there are several derivations of thereasonable, hot only because of the results of Sec. IV, but

Lorentz-Dirac equation where the hypothesis of simplicityaISO because the Caldirola equatiéree of preacceleration

does not appear. However, in those derivations there arean be written as a power series, involving the radius of the

some assumptions that, in general, are not explicitly men§pher|catlhshell, that resgmbles th? tpk)]ower sent()asromOf in th
tioned, and which play a role similar to the simplicity one. course, these power series aré not the same, because in the

We cannot discuss here the different derivations of théimit V\_/hen the radius of the spherical sh_ell goes to zero,_the
Lorentz-Dirac equation, but in order to illustrate this point equation for a point charge that results is the Lorentz-Dirac
we will briefly comment on the derivation presented in Sec.quation, and not the enlarged one.

[l and on that of Baruf42].

If we calculate the four-momentub] with the help of
the construction of Fig. 1, we obtain, because of @&, the | would like to thank A. Cabo of the ICIMAF La Habana-
Lorentz-Dirac equatioril) at once, without the need of the Cuba and R. Rivera of Universidad Catolica de Valparaiso
hypothesis of simplicity. But as we have already pointed oufor useful discussions. Thanks are also due to the Comisio
in Sec. Il, the hypothesis of simplicity is implicitly contained Nacional de InvestigacioCientfica y Tecnolgica de Chile,
in the very special choice of the hypersurfaces of Fig. 1, a€ONICYT, for its support through of FONDECYT Project
becomes clear when we consider the hypersurfaces of Fig. Rlo. 1990297.
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