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Preacceleration in classical electrodynamics

D. Villarroel
Avenida Tobalaba 3696, Lomas de Tobalaba, Puente Alto, Santiago, Chile

~Received 5 September 2001; revised manuscript received 8 July 2002; published 29 October 2002!

As is well known, the Lorentz-Dirac equation follows by means of a hypothesis of simplicity. When this
hypothesis is ruled out, several additional terms can be added to the one that appears in the Lorentz-Dirac
equation. We study the equation that considers the two terms explicitly shown by Dirac in his paper. It is
shown, on general grounds, that the additional terms are not related to the radiation emitted by the electron;
which is fully taken into account by the Larmor term of the Lorentz-Dirac equation. This result is explicitly
verified by means of an exact solution of the enlarged Lorentz-Dirac equation that corresponds to a monoen-
ergetic electron in circular orbit. Also it is shown that the additional term diminishes the effect of preaccel-
eration in comparison with the one that comes from the Lorentz-Dirac equation.
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I. INTRODUCTION

The dynamics of the electron based on the concept
point charge plays a fundamental role in classical as wel
in quantum electrodynamics. At the classical level the po
model has been of great importance in the description of
electron dynamics in particle accelerators; specially in c
nection with the spectrum of synchrotron radiation, which
correctly described by means of Schwinger’s theoretical
mula @1#. Besides, in quantum electrodynamics the po
model of the electron has allowed one to calculate tiny
fects, such as the shift of the energy levels in hydrogen
atoms and corrections to the magnetic moment of the e
tron; calculations that agree with great accuracy with
experimental values. Moreover, high-energy experime
have not revealed any structure for the electron even at
tances as small as 10215 cm.

The fundamental equation of motion for a point electr
in classical electrodynamics is the Lorentz-Dirac equat
@2#, which is

v̇m5~e/mc!Fmnvn1t0~ v̈m2 v̇lv̇lvm/c2!, ~1!

where e and m are the charge and mass of the electr
respectively,c is the velocity of light,vm is the four-velocity
of the electronżm, and dots denote derivatives with respe
to the proper timet. Moreover, Greek indices take valu
0,1,2,3, the metric is (21,1,1,1), the parametert0 is given
by

t05
2e2

3mc3
, ~2!

and Gaussian units are used throughout this paper. The
term on the right hand side of Eq.~1! is the acceleration due
to the external fieldFmn; while the second term is the con
tribution to the acceleration due to the electron’s own fie

The Lorentz-Dirac equation~1! presents some patholog
cal features, such us the existence of runaway solutions
acausal or preacceleration effects. To deal with these
thologies two methods have been worked out in the lite
1063-651X/2002/66~4!/046624~9!/$20.00 66 0466
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ture. In the first one the electron is still considered as a po
particle, but alternative equations of motion to the Loren
Dirac equation have been proposed in order to avoid
existence of runaway solutions and preacceleration@3–9#. In
particular, the Landau-Lifshitz equation@4# has gained re-
newed interest lately@10–12#. In the second method the ide
of a point electron is abandoned in favor of an extended
@13–17#, epecially by considering a model based in a u
formly charged spherical shell. This model leads to the Ca
irola equation@18,19# in the relativistic case, equation that
free of runaway solutions and acausalities if the radius of
spherical shell is bigger than 2e2/3mc2.

The models based on a point electron as well as that
spherical shell cannot be considered as fully satisfactory.
example, the existence of divergent integrals in classica
well as quantum electrodynamics constitutes a clear ind
tion that the electron cannot be represented by a point.
manipulation of quantities that take an infinitely large val
is out of place in a definitive theoretical formulation.

The model where the electron is represented by a sph
cal shell has a rather hybrid structure, since the Caldir
equation determines, at least, in principle, a world line t
describes the trajectory of a point. Physical motions such
rotations, deformations, or oscillations of the spherical sh
due to external fields or the fields of other charges, are
described by the world line. A fully relativistic formulation
of an extended charge must be realized in terms of fie
including the electromagnetic field and also fields such
gravity and others that explain the stability of the electro
But a description in terms of fields necessarily involves
dynamical system with infinite degrees of freedom, and
just three, as the Caldirola equation does.

Unfortunately, a field theoretical formulation of an e
tended electron involves enormous mathematical compl
ties. Besides, the only structure dependent quantities of
electron that the experiment shows nowadays are its m
and charge. It is precisely due to this situation that simplifi
models, such as the point electron or the spherical shell,
of interest, since they may cast light into more realistic mo
els. The domain of validity of classical electrodynamics is,
course, limited by quantum phenomena. Nevertheless, c
sical electrodynamics is still of interest in this context, sin
©2002 The American Physical Society24-1
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it must be obtained from the quantum formalism in the lim
when Planck’s constant tends to zero.

Even if the alternative equations of motion for a po
charge do not have runaway solutions and acausal effe
they present, in general, other types of inconsistencies.
example, in the case of the Mo-Papas equation@5#, Huschilt
and Baylis@20# found evidence against its general validit
Besides, Comay@21# showed that the equations of Mo an
Papas@5#, Bonnor @6#, and Herrera@7# are unphysical, be-
cause they do not satisfy the principle of conservation of
energy. Futhermore, we showed@22# that the Mo-Papas an
Landau-Lifshitz equations admit as exact solutions, with
propriate external fields, the motion of a monoenerge
charge in circular orbit, as well as the motion of two identic
charges that rotate at constant angular velocity at the op
site ends of a diameter. For these motions the rate of ra
tion can be determined by two independent methods.
first one uses the well-known Lienard-Wiechert fields o
point charge to calculate the energy flux across the sur
on a sphere of an infinitely large radius that encloses
charges. This method allows one to obtain the correct rat
radiation, since it follows uniquely, without any ambiguitie
whatsoever, from the Maxwell equations. In the seco
method the rate of radiation is obtained starting from
Mo-Papas and Landau-Lifshitz equations by using the
ergy conservation law, the input energy due to the exte
fields, and the symmetries of the motions. It turns out that
the motion of one charge the rate of radiation obtained fr
the solution of the Mo-Papas equation coincides exactly w
the one derived from the fields of a point charge for t
motion. But in the case of the solution for the two charg
the solution of the Mo-Papas equation does not describe
rectly the rate of radiation due to the interference of the fie
of both charges. In the case of the Landau-Lifshitz equa
both solutions lead to a rate of radiation that does not co
cide with the one derived from the fields of a point charg
Of course, the difference between the rate of radiation ca
lated by the two procedures is, like the departure from c
sality in the case of the Lorentz-Dirac equation, very sm

As has been emphasized by Parrott@8# and Blanco@23#,
the above mentioned troubles that affect the equations
motion for a point charge do not mean that it is impossible
construct an equation of motion for a point charge consis
with basic principles such as the principle of causality a
the principle of energy conservation, and that at the sa
time reproduces the rate of radiation obtained from the fie
of a point charge. In this paper we will follow this conce
tion. Although in addition to the runaway solutions and aca
salities the Lorentz-Dirac equation also contains other
fects as, for instance, instability problems@24,25# and lack of
uniqueness@23,26–28#, here we will focus mainly on the
problem of preacceleration. Because of the well-known
perimental limitations of classical electrodynamics, we w
adopt consistency with basic principles as the guidance
cedure, leaving aside experimental or practical aspects.
fundamental approach of Dirac@2# will be followed by con-
sidering the electron as a point from the start, but discard
Dirac’s assumptions of simplicity. This opens the possibil
that the preacceleration arises because the Lorentz-D
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equation corresponds to a truncated version of an hypoth
cal ‘‘exact’’ equation which is free of acausal effects. O
conjecture is that in the ‘‘exact’’ equation the electron’s ow
field would give rise to a power series in the parametert0 of
Eq. ~2!.

In this paper we present evidence in support of the ab
mentioned possibility about the existence of a classical eq
tion of motion for a point charge without pathological fe
tures. Because of its great complexity, the problem will n
be considered here in its full generality; but instead we w
consider the enlarged Lorentz-Dirac equation that conta
the two terms that appear explicitly in Dirac’s paper. Th
equation is the following one:

v̇m5~e/mc!Fmnvn1t0~ v̈m2 v̇lv̇lvm/c2!2t0
4$~4/c4!v̇2

3~ v̇ v̈ !vm1@~1/c4!v̇42~4/c2!v̈22~4/c2!~ v̇ v̂ !#v̇m

2~4/c2!~ v̇ v̈ !v̈m%. ~3!

The content of the paper is as follows. In Sec. II it
shown that the additional term proportional tot0

4 in Eq. ~3!
does not have any relation with the radiation emitted by
charge. As will be clearly established, the radiation emit
by the charge is fully taken into account by means of
nonlinear Larmor term that appears in the Lorentz-Dir
equation. The proof of this property is carried out in gene
grounds, and consequently, with independence of the
larged equation under consideration, the radiation is ex
sively described by the Larmor term of the Lorentz-Dir
equation.

In Sec. III, it is shown that Eq.~3!, with appropriate ex-
ternal fields, allows as an exact solution the motion o
monoenergetic electron in a circular orbit. This solution
produces exactly the same spectrum for synchrotron ra
tion as the Lorentz-Dirac equation does; that is, Schwing
well-known formula.

In Sec. IV, Eq.~3! is applied to the motion of an electro
along a straight line in the potential well, that is, in an ext
nal electric field that has a fixed value in a certain inter
and vanishes identically outside it. Because of the high n
linearity of Eq. ~3!, in this case an exact solution does n
seem to be possible. However, by transforming Eq.~3! into
an integro-differential equation, the solution can be obtain
with any degree of accuracy. The relevant result is that
additional term proportional tot0

4 contains corrections to the
preacceleration of ordert0 that diminish the acausal effect

Finally, Sec. V is devoted to some comments.

II. GEOMETRICAL GROUNDS

The purpose of this section is to clarify the physic
meaning of the additional term proportional tot0

4 that figures
in the enlarged Lorentz-Dirac equation~3!, and more gener-
ally, the physical meaning of the almost arbitrary four-vec
Bm that appears in Dirac’s paper@2#. To this end, two points
of departure from Dirac’s approach are of fundamental i
portance. The first consists in the use of only the phys
fields of the electron, that is, the retarded fields. The sec
consists in following Rohrlich’s approach based in the fo
4-2
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momentum associated with the electron’s field@29#, but con-
sidering now an arbitrary world line, and not just a charge
uniform motion.

In his paper Dirac computes the flow of the energ
momentum tensor across a thin world tube of radius« that
surrounds the electron world linezm(t). A point xm on this
tube satisfies the following equations:

~xm2zm!~xm2zm!5«2,
~4!

~xm2zm!vm50.

For an arbitrary proper timet, Eqs. ~4! determine a two-
dimensional sphere of radius« centered at the pointzm(t)
and contained in the hyperplane orthogonal to the fo
velocity vm(t). Therefore, an integral over the tube can
performed by integrating first over the two-dimension
sphere, followed by an integral over the proper time. No
from the requirement of conservation of energy and mom
tum, Dirac concludes that the integral over the tw
dimensional sphere must be a perfect differential of a fo
vectorBm . This four-vectorBm is such thatḂm is orthogonal
to the four-velocityvm ; but it is not determined by the con
servation of energy and momentum. Thus a family of p
missibleBm exists, which in turns gives rise to a family o
permissible equations of motion for a point electron. Dir
obtains the Lorentz-Dirac equation~1! by choosing the sim-
plest Bm , that is, the one proportional to the four-veloci
vm . Dirac also presents in his paper another possibleBm ,
which when added to the simplest one gives rise to the
larged Lorentz-Dirac equation~3! that will be studied in the
next two sections.

The fundamental quantity to be considered in this sec
is

Pm~t!5
1

cES
TmndSn, ~5!

whereS is an arbitrary spacelike hypersurface that interce
the electron world line at the pointzm(t), and Tmn is the
usual energy-momentum tensor constructed with the reta
fields of the electron. Then, ifFmn is the external field, the
equation of motion of the electron would be

dPm

dt
5~e/c!Fmnvn. ~6!

However, the energy-momentum tensorTmn has strong sin-
gularities at the point where the hypersurfaceS intercepts
the electron world line, which implies that the integral~5!
does not exist. In fact,Tmn has three terms@30# that behave
like r24, r23, and r22, wherer is the invariant distance
defined by2vm(xm2zm)/c. In particular, the term that be
haves asr24 makes the integral in Eq.~5! not only ill de-
fined, but divergent. This difficulty is, of course, direct
associated with the concept of a point electron, and
standard solution is to perform a mass renormalizat
procedure.
04662
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In order to absorb the divergent part ofPm by means of an
electron mass renormalization procedure, some restrict
about the permissible hypersurfaceS that appears in Eq.~5!
are necessary. Let us begin with Rohrlich’s hyperplaneS
orthogonal to the electron world line@29#. Following also
Rohrlich, let us isolate the point where the hyperplane c
the electron world line by means of a two-dimension
sphere of radius« contained in the hyperplaneS and cen-
tered at the point of intersection. Instead of evaluating
integral ~5! directly over the hyperplane, it is instructive t
calculate it by an indirect way, with the help of Fig. 1 and t
property

]nTmn50, ~7!

which is valid off the electron world line.
In Fig. 1s is the Dirac tube defined by means of Eqs.~4!.

For this reason the two-dimensional sphere at the upper
of the Dirac tube coincides exactly with the two-dimension
sphere in Rohrlich’s hyperplaneS. In other words, the Dirac
tubes and Rohrlich’s hyperplaneS fit perfectly well.

In what follows the electron world line is assumed to
an straight line in the remote past; which ensures that
total energy radiated by the electron is finite. The light co
C of Fig. 1 is drawn into the future from the pointz( t̄),
located in the straight section of the electron world line. It
easy to see that in the straight section, but not in genera
two-dimensional sphere of the Dirac tube is such that all
points have a unique retarded point over the electron wo
line. Therefore, the lower end of the Dirac tube fits perfec
well with the light coneC.

In the limit when t̄ goes to2` and« goes to zero, the
integral over Rohrlich’s hyperplaneS can be transformed
with the help of Eq.~7!, into an integral over Dirac’s tubes
plus an integral over the light coneC, namely,

Pm~t!5
1

cEs
Tmndsn1

1

cEC
TmndCn. ~8!

The integral over the Dirac tube has been evaluated e
where,@31,32# and the result is

FIG. 1. The hyperplaneS is orthogonal to the four-velocityvm,
and s is a Dirac tube that surrounds the electron world line. T
light coneC is drawn from the straight part of the electron wor
line into the future.
4-3
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1

cEs
Tmndsn5E

2`

t S e2

2«c2
v̇m2

2e2

3c3
v̈m1

2e2

3c5
v̇lv̇lvmD dt8.

~9!

The surface element of the light coneC is @33#: dCn

5knr2 dr dV, wherekn is the null ray$xn2zn( t̄)%/r, and
dV is the solid angle element in the hyperplane orthogo
to vm( t̄). BesidesTmndCn5(e2/8p)km r22 dr dV. Now,
the integral over the light coneC is trivial because all the
points of the lower two-dimensional sphere of the Dirac tu
haver5«. Moreover, in the limit whent̄ goes to2`, the
upper limit ofr at Rohrlich’s hyperplane is̀ . The result of
the integral over the light coneC is equal to (e2/2«c2)vm
(2`). If, as usual, the bare mass four-momentumm0vm is
added in order to carry out the renormalization process,
four-momentumPm associated with Rohrlich’s hyperplaneS
is the following:

Pm~t!5m0vm~t!1E
2`

t S e2

2«c2
v̇m2

2e2

3c3
v̈m

1
2e2

3c5
v̇lv̇lvmD dt81

e2

2«c2
vm~2`!, ~10!

from which, because of Eq.~6!, the Lorentz-Dirac equation
~1! follows.

The result~10! for the four-momentum~5! has been ob-
tained for an arbitrary world line, except for the restriction
having a uniform motion in the remote past, and for an h
perplaneS orthogonal to the electron world line at the poi
of intersectionzm(t). In the particular case of a uniform
motion for all proper time, that is, forv̇m(t)[0, Eq. ~10!
reduces to the well-known result of Rohrlich, sincevm
(2`)5vm(t).

The above discussion shows that Rohrlich’s well-kno
solution of the old problem about the 4/3 factor@29#, is
closely related with Dirac’s derivation of the Lorentz-Dira
equation of motion~1! for a point electron. In this context
Rohrlich’s choice of an hyperplane orthogonal to the fo
velocity plays a crucial role. In fact, electron mass renorm
ization is possible if and only if the hyperplaneS of Fig. 1 is
orthogonal to the four-velocity@34#.

The two first terms of the integrand of Eq.~10! are perfect
differentials, and therefore after integration they repres
quantities that depend only on the proper timet associated
with the point whereS intersects the electron world line. Th
contribution at the lower limit of the integral cancels o
with the term that containsvm(2`) in Eq. ~10!. On the
contrary, the third term is not a perfect differential, and
integral contains information on the whole past history of
electron until the proper timet.

In his study about the electromagnetic radiation, Rohrl
clearly identifies the third term in the integrand of Eq.~10!
with the momentum four-vector rate at which radiation
leaving the charge@35#. The essentially different role of th
third term with respect to the two first ones becomes tra
04662
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parent by means of Teitelboim’s splitting of the energ
momentum tensorTmn into a bound,Tmn

b , and a radiation,
Tmn

r , part @31,36#.

Tmn5Tmn
b 1Tmn

r . ~11!

The bound energy-momentum tensorTmn
b is defined by the

terms of Tmn that behave liker24 and r23; whereas the
radiation energy-momentum tensorTmn

r consists of the terms
that behave liker22. The crucial property of the splitting
~11! lies in that both parts are dynamically independent
the electron world line, sinceTmn

b as wellTmn
r satisfy Eq.~7!.

Also, the splitting~11! allows to understand in a thoroug
way Rohrlich’s local radiation criterion@35#. ThusTmn

r rep-
resents energy-momentum that detaches itself from the e
tron and leads an independent existence as soon as it is
duced by the electron; whereasTmn

b represents energy
momentum that is ‘‘tied’’ to the electron and is carried alo
with it.

The splitting~11! induces a natural splitting of the four
momentum~5! into a boundPm

b and a radiationPm
r part, each

of which satisfies Eq.~8!. In the case ofPm
r , the integral over

the light cone vanishes identically, and the integral over
Dirac tube gives rise to the nonlinear term that represents
radiation in the integrand of Eq.~10!. However, in the case
of Pm

b , both the integral over the Dirac tube and the integ
over the light cone are not vanishing. The integral over
Dirac tube gives rise to the perfect differentials that appea
the integrand of Eq.~10!, while the integral over the light
cone gives rise to the last term in the right hand side of
~10!.

The derivation of the Lorentz-Dirac equation~1! by
means of the four-momentumPm given in Eq.~10! does not
use the hypothesis of simplicity of Dirac. However, as w
be clear below, Dirac’s hypothesis of simplicity is implicitl
contained in the geometry of Rohrlich’s hyperplane. In ge
eral, the hypersurfaceS of Eq. ~5! does not have to be a
hyperplane; and then, because of the strong singularitie
Tmn , different ways of isolating the point of intersection o
the electron world line with the hypersurfaceS give rise to
different Pm , and consequently to different equations
motion.

Due to the different physical meaning of the radiation a
bound energy momentum tensorsTmn

r andTmn
b , respectively,

it is convenient to calculate the corresponding radiation a
bound four-momentumsPm

r and Pm
b in a separate way. An

instructive representation of them can be obtained with
help of Fig. 2. In this figures is an arbitrary two-
dimensional surface contained inS that encloses the point
of S that are in an immediate vicinity of the pointzm(t) of
intersection betweenS and the electron world line.C is the
hypersurface constructed by means of null rays, where e
ray is determined by a point ofs and its corresponding re
tarded point on the electron world line. The timelike tubeS`

surrounds the electron world line, and at the end the li
will be taken in whichS` tends to spatial infinity.

Considering that the radiation tensorTmn
r satisfies Eq.~7!,

the radiation four-momentumPm
r can be written as an inte
4-4
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gral over the three-surfaceC plus an integral over the tub
S` of Fig. 2. Due to the fact that the radiation energy m
mentum Tmn

r is proportional tokmkn and that the three
surfaceC is such thatkmdCm50 @37#, the integral overC
vanishes identically no matter the form ofS ands. There-
fore, only the integral overS` survives in the case ofPm

r .
This integral has been evaluated elsewhere@31,34,36#, and
the result is the integral of the nonlinear Larmor term th
appears in Eq.~10!. Now, sincePm

r is perfectly well defined,
there is no room in it for the Dirac four-vectorBm . In par-
ticular, then, this four-vector does not have any connec
with the radiation emitted by the electron, which is ful
taken into account by means of the Larmor term that app
in the Lorentz-Dirac equation~1!. In the following section
we will verify explicitly this property in the case of the exa
solution of the enlarged Lorentz-Dirac Eq.~3! that describes
a monoenergetic electron in circular orbit.

The bound four-momentumPm
b can be also written as th

sum of an integral over the hypersurfaceC and an integral
over the tubeS` of Fig. 2. But in this case, since the energ
momentum tensorTmn

b behaves at least asr23 whenr goes
to infinity, the integral overS` vanishes. Thus, only the in
tegral over the hypersurfaceC survives and, as is evident, i
the limit when the two-dimensional surfaces is shrunk into
the electron world linePm

b , contrary toPm
r , depends only on

the proper timet. But now, due to the strong singularities
Tmn

b at r50, Pm
b in contrast toPm

r is highly indeterminate.
The condition for the renormalization of the mass requi
that the surfaceS of Fig. 2 cuts the electron world line
orthogonally, but this by no means determinesPm

b @37#.
Therefore, the four-vectorBm of the Dirac paper is exclu
sively contained in the bound four-momentumPm

b @38#. Now,
sincePm

b depends only on the proper timet, it gives rise to
a perfect differential in the equation of motion~6!, as the
four-vectorBm of Dirac does.

III. AN EXACT SOLUTION

The construction of the solution of the enlarged Loren
Dirac equation~3! corresponding to a monoenergetic ele

FIG. 2. S is an arbitrary spacelike hypersurface;s is a two-
dimensional surface contained inS andC is the three surface con
structed by means of null rays.
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tron in a circular orbit, needs the electrostatic field genera
by an infinitely long solenoid of radiusr5b, whose axis
coincides with theZ axis, and which is fed with a time
dependent charge current density given by

J5Atd~r2b!ŵ, ~12!

whereA is a positive number,d is the usual Dirac’s delta
function,r is the radial cylindrical coordinate, andŵ denotes
the unit vector associated with the cylindrical coordinatew.
The charge density vanishes everywhere. These sources
rise to the following electric and magnetic fields, express
in terms of their Cartesian components:

Ex5~2pA b2/c2!
y

x21y2
,

Ey52~2pA b2/c2!
x

x21y2
,

~13!
Ez50,

Bx5By5Bz50,

outside the solenoid, and

Ex5~2pA/c2!y,

Ey52~2pA/c2!x,
~14!

Ez50,

Bx5By50, Bz5~4pAt/c!,

inside the solenoid.
The electric field is tangent to the circles contained

planes parallel to theX-Y plane and centered at theZ axis.
Moreover, the electric field has a fixed magnitude over e
circle. It is immediate to see that the electromagnetic fie
~13! and ~14! satisfy the source free Maxwell equations,
well as the corresponding boundary conditions, at the s
noid surfacer5b.

In what follows only the region outside the solenoid w
be of interest. Besides, the time-independent electric field
Eq. ~13!, a time-independent homogeneous magnetic fi
that points along theZ axis will be assumed to exist outsid
the solenoid. As will be shown below, Eq.~3! with these
external fields allows the solution corresponding to the m
tion of a monoenergetic electron in a circular orbit. Let
assume that the motion takes place in theX-Y plane in a
circle of radiusa.b centered at the origin, that is

x05c t, x15a cosvt, x25a sinvt, x350, ~15!

wherev is a time independent parameter. According to E
~13!, the only nonzero Cartesian components of the exte
fields strengthsFmn are

F0152F105Ex , F0252F205Ey , F1252F215B.
~16!
4-5
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It is immediate to see that these external fields are such
the componentm53 of Eq. ~3! is identically satisfied, with-
out imposing any restriction on the parameters, ifv35 ẋ3

[0. Moreover, from Eq.~15! it follows that

v05cg, v152cbg sinvt, v25cbg cosvt, ~17!

whereb5a v/c andg is the constant,

g5
dt

dt
5~12b2!21/2. ~18!

If E denotes the magnitude of the time-independent elec
field of Eq. ~13! over the circle of radiusa, then Eq.~3! for
m51 is

2av2g2 cosvt5~egE/m!sinvt1~ebgB/m!cosvt

1t0 a v3g5 sinvt2t0
4b4av6g10 cosvt,

~19!

whereas Eq.~3! for m52 becomes

2av2g2 sinvt52~egE/m!cosvt1~ebgB/m!sinvt

2t0 a v3g5 cosvt2t0
4b4av6g10 sinvt.

~20!

Here it is convenient to introduce the radial unit vectorr̂ and
the tangential unit vectorŵ of the cylindrical coordinates
which in terms of the Cartesian unit vectorî and ĵ are given
by

r̂5 î cosvt1 ĵ sinvt,

ŵ52 î sinvt1 ĵ cosvt,

which allows to write Eqs.~19! and ~20! as

$~egE/m!1t0 a v3g5%ŵ

5@av2g21~ebgB/m!1t0
4b4a v6g10#r̂.

~21!

From which it follows that

E52
2e

3a2
b3g4 ~22!

and

B52
mcgv

e
~11t0

4v4b4g8!. ~23!

For m50, Eq. ~3! reproduces, once again, Eq.~22!. The
value ofE that, according to Eq.~22! is needed to sustain th
motion, can be easily obtained by choosing the appropr
value of the constantA that appears in the charge curre
density~12!.
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As is clear from Eq.~21!, the termt0
4 of Eq. ~3! appears

exclusively in the radial component of this equation. T
tangential component in Eq.~21! coincides exactly with the
one obtained from the Lorentz-Dirac equation. The physi
meaning of Eq.~22! becomes obvious when this equation
written in the form

ev•E5
2e2c

3a2
b4g4, ~24!

wherev is the ordinary velocityv5vŵ. The left hand side
of Eq. ~24! corresponds to the power that the external elec
field supplies to the electron. Therefore, because of ene
conservation and the fact that the kinetic energy of the e
tron remains fixed, the right hand side must be the total r
of radiation that escapes to infinity. But the right hand side
Eq. ~24! is exactly the total rate of radiation that follow
from the nonlinear term of the Lorentz-Dirac equation@39#.
This result constitutes a verification, for this particular m
tion, that thet0

4 term of Eq. ~3! has no relation with the
energy that is radiated away, in agreement with the anal
carried out in Sec. II. In comparison with the Lorentz-Dir
equation~1!, the only effect of thet0

4 term of the enlarged
Lorentz-Dirac equation~3! consists of a tiny change in th
magnetic field from that required by the Lorentz-Dirac equ
tion for the same motion.

IV. THE PREACCELERATION

Although the term proportional tot0
4 of the enlarged

Lorentz-Dirac equation~3! does not affect the radiation, i
has, nevertheless, an important influence on the phenom
of preacceleration. In order to see this it is enough to c
sider the case of a motion along a straight line, which will
chosen as theX axis. The external electromagnetic field co
sists then in an electric field that has a nonvanishing com
nent only along theX axis. Thus, the only nonzero compo
nents of the fields strengthsFmn are

F0152F105E. ~25!

For thisFmn, the componentsm52 andm53 of Eq.~3! are
identically satisfied withv25v350. Now, as in the case o
the Lorentz-Dirac equation@40#, here it is also convenient to
write the componentsv0 andv1 of the four-velocity in terms
of the rapidityw(t) as follows:

v05c cosh~w/c!,
~26!

v15c sinh~w/c!.

The component withm51 of Eq. ~3! then becomes

ẇ2t0ẅ5 f ~t!1
t0

4

c2
~4ẇ2ŵ18ẇẅ22ẇ5/c2!, ~27!

wheref (t)5eE(t)/m. The component withm50 of Eq.~3!
reproduces once again Eq.~27!. In contrast to the case of th
Lorentz-Dirac equation, the introduction of the rapidityw(t)
4-6
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by means of Eq.~26! does not linearize Eq.~3!, because of
the strong nonlinearities contained in the additional term p
portional tot0

4. Fortunately, the effect of the nonlinear term
in Eq. ~27! on the preacceleration can be studied without
necessity of constructing an exact solution of Eq.~27!. Ap-
proximate solutions of Eq.~27! can be constructed with hig
accuracy by the method of successive approximations de
oped by Aguirregabiria@41#. But here it appears to be mor
suitable to transform Eq.~27! into an integro-differential
equation. To this end, let us remember that the solution of
Lorentz-Dirac equation

ẇ2t0ẅ5 f ~t!, ~28!

free of runaway behavior is given by

ẇ5E
0

`

e2sf ~t1t0s!ds.

This equation can be also written in the more conveni
form,

ẇ5
et/t0

t0
E

t

`

e2t8/t0 f ~t8!dt8. ~29!

From Eq.~29! and Eq.~27! it follows that the solutionw(t)
of Eq. ~27! satisfies the following integrodifferential equa
tion:

ẇ5
et/t0

t0
E

t

`

e2t8/t0H f ~t8!1
t0

4

c2
~4ẇ2ŵ18ẇẅ2

2ẇ5/c2!J dt8. ~30!

If instead of the exact solutionw(t), the solutionw1(t) of
the Lorentz-Dirac equation~28! is introduced in the inte-
grand of Eq.~30!, then

ẇ25
et/t0

t0
E

t

`

e2t8/t0H f ~t8!1
t0

4

c2
~4ẇ1

2ŵ118ẇ1ẅ1
2

2ẇ1
5/c2!J dt8 ~31!

will be an approximate solution for the accelerationẇ of Eq.
~27!. The exact solution of Eq.~30! can be then obtained b
means of successive iterations. Now, iff (t) vanishes for
larget, then according to Eq.~29! ẇ1(t) also vanishes for
larget. This in turn implies that theẇ2(t) of Eq. ~31! also
vanishes for larget. This property is valid, of course, for an
iteration. Therefore the exact solution of Eq.~27! constructed
in this manner has an ‘‘acceleration’’ẇ(t) that also vanishes
for large t. In other words, this procedure ensures that
solution does not have a runaway behavior.
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For the purpose of this paper it is enough to consider
correction to the Lorentz-Dirac equation contained in E
~31!. Moreover, for definiteness the following pulsef (t) will
be considered:

f ~t!5H f 0 for 0,t,t1

0 otherwise,
~32!

where f 0 is a constant. The corresponding solution of t
Lorentz-Dirac equation~28! is given by

ẇ1~t!5H f 0et/t0~12e2t1 /t0! ~t,0!

f 0~12e2(t12t)/t0! ~0,t,t1!

0 ~t1,t!.

~33!

Since the interest here is in the preacceleration, theẇ2(t) of
Eq. ~31! will be considered only for negative values of th
proper timet. Moreover, only the leading contribution to th
preacceleration due to the additional term proportional tot0

4

of Eq. ~3! will be given. Despite that this term is proportion
to t0

4, it gives rise to a contribution of ordert0 to the
preacceleration.

Because of the jumps that the functionf (t) in Eq. ~32!
has at the proper timest50 andt5t1, the integrand of Eq.
~31! has delta functions at these proper times. The der
tives ẅ1 andŵ1 that appear in the integrand of Eq.~31! can
be easily obtained from Eq.~28! for any t, namely,

ẅ152
1

t0
$2ẇ11 f 0@u~t!2u~t2t1!#%,

ŵ152
1

t0
2 $2ẇ11 f 0@u~t!2u~t2t1!#

1t0f 0@d~t!2d~t2t1!#%, ~34!

whereu(t) is the step function andd(t) is the usual Dirac
delta function. From Eq.~33! it is easy to see that the term
2t0

4ẇ1
5/c4 that appears in the integrand of Eq.~31! gives rise

to contributions of ordert0
4 and t0

3 to the preacceleration

The term 8t0
4ẇ1ẅ1

2/c2 gives rise to a correction of ordert0
2.

The only contribution of ordert0 comes from the term
4t0

4ẇ1
2ŵ1 /c2 and it is the following:

t0S 4t1f 0
3

c2et1 /t0
D et/t0.

Therefore, fort,0 the Lorentz-Dirac preacceleration th
appears in Eq.~33! is changed to

f 0et/t0~12e2t1 /t0!H 12t0

4t1f 0
2

c2~et1 /t021!
1O~t0

2!J .

~35!

In other words, the term proportional tot0
4 that figures in the

enlarged Lorentz-Dirac equation~3! diminishes the effect of
preacceleration with respect to the one that appears in
4-7
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Lorentz-Dirac equation. This result suggests the possib
that the preacceleration may be, perhaps, suppressed i
enlarged Lorentz-Dirac equation that considers the comp
series with all the powers oft0.

V. A FEW COMMENTS

We have discussed the preacceleration in Eq.~3! by con-
sidering the pulse~32! that changes abruptly att50 andt
5t1. However, we want to emphasize that the preaccel
tion present in the Lorentz-Dirac equation is not a result
forces that change too fast with time. In order to clarify th
point, let us consider the motion of a chargee.0 along the
positivex axis in an electrostatic fieldE(x) that has only one
component along the positivex axis, and such thatE(x)
vanishes identically forx,x1 andx.x2. Then, by associat
ing the proper timet50 with the pointx5x1, Eq. ~29! that
is valid for continuous as well as discontinuous forc
becomes

ẇ5
et/t0

t0
E

0

t1
e2t8/t0 f ~t8!dt8 ~36!

for t,0, wheret1.0 is the proper time corresponding
the point x5x2. Equation~36! clearly shows thatẇ(t) is
positive for t,0, irrespective of the smoothness propert
of f (t). Therefore, even iff (t) starts to increase sufficientl
smoothly atx5x1, the preacceleration is anyway prese
We have chosen the pulse~32! because it leads to the simp
formula ~33!.

In the literature there are several derivations of
Lorentz-Dirac equation where the hypothesis of simplic
does not appear. However, in those derivations there
some assumptions that, in general, are not explicitly m
tioned, and which play a role similar to the simplicity on
We cannot discuss here the different derivations of
Lorentz-Dirac equation, but in order to illustrate this po
we will briefly comment on the derivation presented in S
II and on that of Barut@42#.

If we calculate the four-momentum@5# with the help of
the construction of Fig. 1, we obtain, because of Eq.~6!, the
Lorentz-Dirac equation~1! at once, without the need of th
hypothesis of simplicity. But as we have already pointed
in Sec. II, the hypothesis of simplicity is implicitly containe
in the very special choice of the hypersurfaces of Fig. 1
becomes clear when we consider the hypersurfaces of Fi
l
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Barut@42# has given a very nice derivation of the Lorent
Dirac equation~a procedure that has been extended to ot
cases@43,44#!, where at first sight an ingredient such as t
hypothesis of simplicity does not arise. However, in this ca
the ingredient that plays a role analogous to the simplic
one consists in the procedure itself; since even if the elec
field is considered as given by the Lienard-Wiechert formu
the field point and the retarded one are worked out as in
pendent variables. Although this procedure is very nice a
somewhat reasonable, it does not follow from basic pr
ciples.

The present approach to the preacceleration has b
mainly motivated by the lack of a correct description of t
radiation in several alternative equations of motion for
point charge@20–22#. In our approach the coincidence b
tween the rate of radiation inferred from the equation of m
tion with the one obtained from the fields of a point charge
fully guaranteed, at least in the one charge case, since
spective of the enlarged Lorentz-Dirac equation, the rate
radiation is given by the Larmor term. Besides, it is al
reasonable to expect that any admissibleBm will change the
preacceleration contained in the Lorentz-Dirac equati
This expectation is based on the fact that each admiss
Bm , like the Schott term@31,36# that gives rise to the preac
celeration in the Lorentz-Dirac equation, is associated w
the bound part of the energy-momentum tensor, as
shown in Sec. II.

Our conjecture about the suppression of the preaccel
tion when the self-field of the electron is considered a
power series in the parametert0, appears to be somewha
reasonable, not only because of the results of Sec. IV,
also because the Caldirola equation~free of preacceleration!
can be written as a power series, involving the radius of
spherical shell, that resembles the power series int0. Of
course, these power series are not the same, because
limit when the radius of the spherical shell goes to zero,
equation for a point charge that results is the Lorentz-Di
equation, and not the enlarged one.
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